

Published on Web 10/05/2004

Formation of a Stable 14-Helix in Short Oligomers of Furanoid *cis-β*-Sugar-Amino Acid^{II}

Srivari Chandrasekhar,*,† Marepally Srinivasa Reddy,† Bharatam Jagadeesh,*,‡ Anabathula Prabhakar,[‡] Mallem H. V. Ramana Rao,[‡] and Bulusu Jagannadh^{*,§}

Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received June 2, 2004; E-mail: srivaric@iict.res.in; bj@iict.res.in; jagan@iict.res.in

Scheme 1

The design and synthesis of new molecular architectures with predictable, well-defined secondary templates is an important area of research. β -Peptides have recently emerged as key leads in the design of such structures because they display an impressive range of structural diversity, including helices, sheets, and turns.¹ The interest in unnatural biopolymers is attracting increasing attention due to the new biocompatible materials that can be made from them. The applications include, among others, self-assembling complexes and lead candidates in drug discovery programs. Research groups of Seebach² and Gellman³ have shown in their pioneering contributions that the oligomers using different side chains at the β^2 or β^3 positions offer the opportunity for the rational design of different types of helical conformations. The conformational space of β -peptides was extensively studied to understand the design principles of the secondary structures.⁴

The ongoing research activity in our laboratory focuses on the conformational control over the helix type and symmetry.⁵ Gellman's research group^{3b} has shown that by incorporating the C α and C β bond into a trans cycloalkane based β -amino acid and by varying the ring size the helix type can be controlled. Five- and six-membered rings stabilize the 12- and 14-helix, respectively.

Kessler's research group⁶ has shown that a mixed oligomer containing a furanoid (ribofuranoic acid) trans-sugar amino acids (SAA) and a β -Ala generated a mixed 12/10-helix. Here, we show that a choice of xylofuranoic acid over a ribofuranoic acid in a cis-SAA can induce the formation of a stable 14-helix in a homooligomer. The molecular mechanics calculations carried out by us on a ribofuranoic acid and a xylofuranoic acid have shown that the angle N–C β –C α –C(=O), designated⁷ as θ , takes a value either $\sim 90^{\circ}$ (in a 12-helix) or $\sim 60^{\circ}$ (in a 14-helix). The calculations have encouraged the synthesis and structural characterization of cis-SAA homooligomers.

The monomers 2a and 2b were synthesized⁸ from known azido sugar derivative⁹ $\mathbf{1}$ (Scheme 1) which were subsequently used to prepare dimer 3, tetramer 4, hexamer 5, and octamer 6 (Figure 2) by standard coupling protocol using EDCI and HOBt reagents.^{10,11} In the present scheme the azido group was retained until the end of oligomer synthesis, and then it was converted to the NH-Boc.

The circular dichroism (CD) spectroscopy of β -amino acids provides characteristic signatures of helical conformation of various peptides. The CD spectra for 4-6 in 200 μ M solutions in methanol presented in Figure 1 suggest the adoption of a distinctive secondary structure. Tetramer 4 displays a minimum, zero crossing and a maximum at 198, 209, and 218 nm, respectively, corresponding to the formation of a right-handed 14-helix.12

of the 14-helix with the increasing length of the peptide. It would be instructive to obtain structural insight into the new amino acid in particular regarding the helix-forming nature of the homooligomer. Accordingly, we have studied the conformations of 4-6 by NMR investigations, which were supplemented by molecular mechanics and restrained molecular dynamics calculations.

3

R'=N₂

NMR studies were carried out in CDCl₃ solution, and the signal assignments were established by two-dimensional DQF-COSY, TOCSY, and ROESY experiments. The dispersion of the chemical shifts of the amide protons indicates the presence of a secondary structure, which increases from 1.06 to 1.33 ppm with increasing number of residues in 4–6. For all these peptides ${}^{3}J_{C\alpha H-C\beta H}$ was observed to be <5 Hz which clearly demonstrated the presence of predominantly a single conformation around $C\alpha - C\beta$ (θ) $\approx 60^{\circ}$ for each residue, a prerequisite for a helix^{3a}. Furthermore, the calculations of sugar-ring pucker using the refined Karplus equation¹³ has resulted in $P \approx 180^{\circ}$ and $\phi_{\rm m} \approx 55^{\circ}$ for all the residues. The ϕ_m value also agrees with the requirement of a 14-helix.

Figure 1. CD spectra of 4-6 normalized for amide chromophores.

Division of Organic Chemical Sciences

 [‡] NMR Group.
 [§] Molecular Modeling Group.
 ^I IICT Communication No: 040516.

Figure 2. Schematic view of the hydrogen bonding (dashed arrows) and NOEs (dark arrows) of NH_i- -C_{β}H_{i+2} and NH_i- -C_{β}H_{i+3} that characterize the 14-helix.

Large values (8.0–10.8 Hz) of ${}^{3}J_{NH-C\beta H}$ in 4–6 correspond to an antiperiplanar arrangement between these protons and also indicates the presence of a secondary structure in solution. NOESY data of 4-6 revealed several medium and long-range backbone NOEs between $NH_i \rightarrow C_{\beta}H_{i+2}$ and $NH_i \rightarrow C_{\beta}H_{i+3}$ (shown in Figure 2), which are distinctive for the 14-helix. For the tetramer 4, the two possible NOE signals between $NH_i \rightarrow C_\beta H_{i+2}$ are well resolved, while the assignment of $NH_i \rightarrow C_\beta H_{i+3}$ (*i* = 1), NOE signal is obscured due to resonance overlap. Nevertheless, despite the overlap of several resonances, the characteristic NOEs that represent a 14helix are more pronounced for hexamer 5 and octamer 6. In the case of **5**, all four expected $NH_i \rightarrow C_\beta H_{i+2}$ NOEs are observed and two out of three $NH_i \rightarrow C_\beta H_{i+3}$ NOEs are assigned without ambiguity. Similarly four out of six $NH_i \rightarrow C_\beta H_{i+2}$ and three out of five $NH_i \rightarrow C_\beta H_{i+3}$ NOEs are clearly distinguished for 6. Furthermore, formation of 14-membered $NH_i \rightarrow CO_{i+3}$ hydrogen bonds in all the peptides has been confirmed by individual titration studies.¹⁴ Two, four, and six hydrogen bonds are formed in 4, 5, and 6, respectively, which are shown schematically in Figure 2. For all the peptides studied the hydrogen bonds of the 14-helix begin from the first residue. The exceptional stability and organization of the 14-helix observed in tetramer 4 are more pronounced in the hexamer 5 and octamer 6.

The restrained MD calculations¹¹ for 4-6 very clearly bring out the salient features. The distance restraints were obtained from the ROESY spectra by using the volume integrals and two-spin approximation. Figure 3 depicts the superimposition of the 10 lowest-energy structures of the peptides 4-6. They are representative of the ordered structures in solution. The NMR structures of 4–6 show the 14-helix with the pitch of \sim 5 Å and three residues per turn. Fraying is seen at the C-terminus end of 4-6 consistent with the NMR experiment (decrease in the value of ${}^{3}J_{C\alpha H-C\beta H}$).

In summary, this study shows that the furanoid $cis-\beta$ -sugar amino acid oligomer adopts in solution a well-defined right-handed 14helix. Functionalization of the conformationally rigid oligomers with

Figure 3. NMR structures of the *cis*-SAA peptides 4-6 as a bundle of the 10 lowest-energy structures calculated from restrained MD simulations: (a) tetramer 4, side view; (b) hexamer 5, top view from C-terminus; and (c) octamer 6, side view. For the sake of clarity acetanilide groups in 5 and 6 are not shown.

defined medicinal properties makes these molecules useful in pharmaceutical applications. Work is in progress in this direction.

Acknowledgment. M.S.R. is thankful to CSIR, New Delhi; A.P. and M.H.V.R.R. acknowledge IICT for financial support. This work is dedicated to the memory of Dr. A. K. Singh.

Supporting Information Available: Synthesis, NMR, and distance constraints used for the MD calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
- (a) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015. (b) Seebach, D.; Overhand, M.; Kuhnle, F. N. M; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913. (c) Seebach, D.; Abele, S.; Gademann, K.; Guichard, G.; Hintermann, T.; Jaun, B.; Mathews, J. L.; Schreiber, J. V.; Oberer, L.; Hommel, V.; Widmer, H. Helv. Chim.
- Acta **1998**, 81, 932. (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. *Chem. Rev.* **2001**, *101*, 101, A.; Powell, D. ; Powell, 3219. (b) Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.; Barchi, J. J., Jr.; Gellman, S. H. *Nature (London)* **1997**, 387, 381. (c) Applequist, J.; Bode, K. A.; Appella, D. H.; Christianson,
- (4) (a) Wu, Y.-D.; Wang, D.-P. J. Am. Chem. Soc. 1998, 120, 4891.
 (4) (a) Wu, Y.-D.; Wang, D.-P. J. Am. Chem. Soc. 1998, 120, 13485. (b) Mohle, K.; Gunther, R.; Thormann, M.; Sewald, N.; Hofmann, H.-J. Biopolymers 1999, 50, 167.
- (5) Sharma, G. V. M.; Ravinder Reddy, K.; Radha Krisha, P.; Ravi Sankar, A.; Narsimlu, K.; Kiran Kumar, S.; Jayaprakash, P.; Jagannadh, B.;
- Kunwar, A. C. J. Am. Chem. Soc. 2003, 125, 13670.
 Gruner, S. A. W.; Truffault, V.; Voll, G.; Locardi, E.; Stockle, M.; Kessler. H. Chem.—Eur. J. 2002, 8, 4366.
- Chem. Lut. J. 2002, 6, 4300.
 Banerjee, A.; Balaram, P. Curr. Sci. 1997, 73, 106.
 (a) Gruner, S.; Keri, G.; Schwab, R.; Venetianer, A.; Kessler, H. Org. Lett. 2001, 3, 3723. (b) Dalcanale, E.; Montanari, F.; J. Org. Chem. 1986, 51, 567. (c) Saito, S.; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1909, 30, 82; Nakajima, H.; Inaba, M.; Moriwake, T. Tetrahedron Lett. 1989, 30, 837.
- (9) Austin, G. N.; Baird, P. D.; Fleet, G. W. J.; Peach, J. M.; Smith, P. W.; Watkin, D. J. *Tetrahedron* **1987**, *43*, 3095.
- (10) Nozaki, S.; Muramatsu, I. Bull. Chem. Soc. Jpn. 1982, 55, 2165.
- (12)
- For details, please see Supporting Information.
 Seebach, D.; Ciceri, P. E.; Overhand, M.; Jaun, B.; Rigo, D.; Oberer, L.;
 Hommel, U.; Amstutz, R.; Widmer, H. *Helv. Chim. Acta* **1996**, *79*, 2043. (13) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.; de Leeuw, H. P. M.; Altona, C. Org. Magn. Reson. 1981, 15, 43.
- (14) The solvent titration was carried out by sequentially adding up to 33% of DMSO- d_6 to CDCl₃ solutions of the peptides.

JA0467667